Hand Benders How To Altide

Aluminum BigBen ${ }^{\text {TM }}$ Hand Bender

Catalog Number	Size Thinwall	Size Rigid	Radius	Fits Bender Handle
960	$1 / 2^{\prime \prime}(12.7 \mathrm{~mm})$	-	$3.69^{\prime \prime}(9.37 \mathrm{~cm})$	BH- 75
961	$3 / 44^{4}(19.1 \mathrm{~mm})$	$1 / 2^{\prime \prime}(12.7 \mathrm{~mm})$	$4.74^{\prime \prime}(12.04 \mathrm{~cm})$	BH- 75
962	$1^{1 "}(25.4 \mathrm{~mm})$	$3 / 4^{\prime \prime}(19.1 \mathrm{~mm})$	$5.81^{\prime \prime}(14.76 \mathrm{~cm})$	BH-100

Hand Bender Handles

Catalog Number	Handle Size
BH-75	$3 / 44^{\prime \prime}$ NPT \times 38" long $(96.5 \mathrm{~cm})$
BH-100	1" NPT $\left.\times 44^{\text {" long }(111.7 ~ c m}\right)$

90° Bends

Back-to Back Benis

Measure length of bend (X). Subtract bender deduct (see Table 1) from length (X) and mark this length (see Table 1) from length (X) and mark this length
from the end of the conduit (Y). Line up (Y) with arrow on bender. Bend until 90° bend is formed.

Table 1

Conduit Size	EMT Deduct	Rigid or IMC Deduct
$1.2^{\prime \prime}$	$5^{\prime \prime}$	$6^{\prime \prime}$
$(12.7 \mathrm{~mm})$	$(22.7 \mathrm{~cm})$	$(15.2 \mathrm{~cm})$
$3 / 4^{\prime \prime}$	$6^{\prime \prime}$	$(20$
$(19.1 \mathrm{~mm})$	$(15.2 \mathrm{~cm})$	$(20.3 \mathrm{~cm})$
$11^{\prime \prime}$	$8^{\prime \prime}$	$\left(32^{\prime \prime}\right.$
$(25.4 \mathrm{~mm})$	$(20.3 \mathrm{~cm})$	$(30.5 \mathrm{~cm})$
$11 / 4^{\prime \prime}$	$12^{\prime \prime}$	-
$(31.8 \mathrm{~mm})$	$(30.5 \mathrm{~cm})$	-

Measure and mark distance on the conduit from fixed point (X), to the back of the 90° bend, point $\left(\mathrm{Y}\right.$. Align (Y) with (B or \star) on bender and make a 90°

Ofisat Bends

Measure height of offset (Z) and multiply by a constant multiplier per angle of bend (see Table 2 on next page) to multiplier per angle of bend (see Table 2 on next page) to from end of conduit to offset and add shrinkage (see Table 2 on next page). Mark this length on conduit (Y). Subtract distance between bends and mark point (X). Using arrow on bender, make desired bend at point (X). Reverse bender and repeat at point (Y)

800.624.4320 gardnerbender.com
Table 2

Angle of Bend	Constant Multiplier	Shrinkage $/$ Inch $(25.4 \mathrm{~mm})$ of Offset Depth
10°	6.0	$1 / 16^{\prime \prime}(1.6 \mathrm{~mm})$
$22-1 / 2^{\circ}$	2.6	$3 / 16^{\prime \prime}(4.8 \mathrm{~mm})$
30°	2.0	$1 / 4$ " $(6.4 \mathrm{~mm})$
45°	1.4	$3 / 8^{\prime \prime}(9.5 \mathrm{~mm})$
60°	1.2	$1 / 2^{\prime \prime}(12.7 \mathrm{~mm})$

(For pre-determined values use Table 3)
This chart is a guide for computing shrinkage. Remember, shrinkage values are only used when working into objects, not away

Recommended Angle Bends per Offset Depths

Offset Depth	Angle of Bend	Distance Between Bends	Conduit Shortens
$\begin{gathered} 1^{1 \prime} \\ (2.5 \mathrm{~cm}) \end{gathered}$	10°	$\begin{gathered} 6^{6 \prime \prime} \\ (15.2 \mathrm{~cm}) \end{gathered}$	$\begin{gathered} 1 / 16 " \\ (1.6 \mathrm{~mm}) \end{gathered}$
$\stackrel{2^{\prime \prime}}{(5.1 \mathrm{~cm})}$	22-1/2 ${ }^{\circ}$	$\begin{gathered} 5-1 / 4^{\prime \prime} \\ (13.3 \mathrm{~cm}) \end{gathered}$	$\begin{gathered} 3 / 8 " 1 \\ (9.5 \mathrm{~mm}) \end{gathered}$
$\begin{gathered} 3^{\prime \prime} \\ (7.6 \mathrm{~cm}) \end{gathered}$	30°	$\begin{gathered} 6^{\prime \prime} \\ (15.2 \mathrm{~cm}) \end{gathered}$	$\begin{gathered} 3 / 4^{\prime \prime} \\ (19.1 \mathrm{~mm}) \end{gathered}$
$\begin{gathered} 4^{4 \prime} \\ (10.2 \mathrm{~cm}) \end{gathered}$	30°	$\begin{gathered} 8^{\prime \prime} \\ (20.3 \mathrm{~cm}) \end{gathered}$	$\begin{gathered} 1^{1 "} \\ (25.4 \mathrm{~mm}) \end{gathered}$
$\begin{gathered} 5^{\prime \prime} \\ (12.7 \mathrm{~cm}) \end{gathered}$	45°	$\begin{gathered} 7^{\prime \prime} \\ (17.8 \mathrm{~cm}) \end{gathered}$	$\begin{gathered} 1-7 / 8^{\prime \prime} \\ (47.6 \mathrm{~mm}) \end{gathered}$
$\begin{gathered} 6^{6 \prime} \\ (15.2 \mathrm{~cm}) \end{gathered}$	45°	$\begin{aligned} & 8-1 / 2^{\prime \prime} \\ & (21.6 \mathrm{~cm}) \end{aligned}$	$\begin{gathered} 2^{2-1 / 4^{\prime \prime}} \\ (57.2 \mathrm{~mm}) \end{gathered}$
$\begin{gathered} 7^{\prime \prime} \\ (17.8 \mathrm{~cm}) \end{gathered}$	45°	$\begin{gathered} 9-3 / 4^{\prime \prime} \\ (24.8 \mathrm{~cm}) \end{gathered}$	$\begin{gathered} 2-5 / 8^{\prime \prime} \\ (66.7 \mathrm{~mm}) \end{gathered}$
$\begin{gathered} 8^{8 \prime} \\ (20.3 \mathrm{~cm}) \end{gathered}$	45°	$\begin{aligned} & 11-1 / 4^{\prime \prime} \\ & (28.6 \mathrm{~cm}) \end{aligned}$	$\begin{gathered} 3^{\prime \prime} \\ (76.2 \mathrm{~mm}) \end{gathered}$
$\begin{gathered} 9 " \\ (22.9 \mathrm{~cm}) \end{gathered}$	45°	$\begin{aligned} & 12-1 / 2^{\prime \prime} \\ & (31.8 \mathrm{~cm}) \end{aligned}$	$\begin{gathered} 3-3 / 8 " \\ (85.7 \mathrm{~mm}) \end{gathered}$
$\begin{gathered} 10 " \\ (25.4 \mathrm{~cm}) \end{gathered}$	45°	$\begin{gathered} { }^{14 "} \\ (35.6 \mathrm{~cm}) \end{gathered}$	$\begin{gathered} 3-3 / 4 " \\ (95.3 \mathrm{~mm}) \end{gathered}$

Because it is flexible, EMT is easy to straighten and will not break if handled as follows. Slip the bender handle over the stub and pull back the desired degree(s) from the bend. For larger conduit sizes, the benderhandle can be replaced by a pipe of correspondingly larger diameter or one small enough to fit inside the conduit, Big mall enough to fit inside the conduit. B Ben ${ }^{\text {TM }}$
elow).

Big Ben" ${ }^{\text {m }}$ Features

Bend-Back Channel Easily corrects conduit

Bigger Hook
With
Bigger Hook
With a $5 x$ durability factor

Allows for a booted foot

Vise-Mate ${ }^{\text {TM }}$
Holds conduit while cutting
\qquad
Back-to-Back Bend

Measure height of offset (D) and multiply by a constant multiplier per angle of bend (see Table 2) to determine distance between bends. Measure length (L) from end of conduit to offset and add shrinkage (see Table 3).
Mark this length on conduit (C). Subtract distance between bends and mark point (X). The first bend should be made at (C), put (STAR) or B at (C). Then make your bends at $(\mathrm{X}) \&(\mathrm{Y})$. Using arrow on bender

Hickey Bends

Hickey bends are a series of segment bends (not to exceed 10° per bend) for sharper than standard code radius bends. Bending success with a hickey is directly proportionate to the operator's bending skill.

